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Abstract

In this paper, we introduced the concept of a soft hoop and we
investigated some of their properties. Then, we established different
types of intersections and unions of the family of soft hoops. We defined
two operations � and→ on the set of all soft hoops and we proved that
with these operations, it is a hoop and also is a Heyting algebra. Finally
we introduced a congruence relation on the set of all soft hoops and we
investigated the quotient of it.

1 Introduction

Hoops are naturally ordered commutative residuated integral monoids, intro-
duced by B. Bosbach in [11, 12] then study by J. R. Büchi and T. M. Owens
in [13], a paper never published. In the last years, hoops theory was enriched
with deep structure theorems(see [2, 4, 5, 7, 8, 9, 10, 15, 23]). Many of these
results have a strong impact with fuzzy logic. Particularly, from the struc-
ture theorem of finite basic hoops one obtains an elegant short proof of the
completeness theorem for propositional basic logic, introduced by Hájek in
[17]. The algebraic structures corresponding to Hájek’s propositional (fuzzy)
basic logic, BL-algebras, are particular cases of hoops. The main example of
BL-algebras in interval [0, 1] endowed with the structure induced by a t-norm.
MV-algebras, product algebras and Gödel algebras are the most known classes
of BL-algebras. Recent investigations are concerned with non-commutative
generalizations for these structures.
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On the other hand, soft set theory was initiated by Molodtsov [21] in 1999
as a new mathematical tool for modelling the uncertainties arising from the
parametrization of elements of a universe. He mentioned several directions
for the applications of soft sets. In fact, before soft set theory, there have
been some mathematical theories such as probability theory, fuzzy set theory,
rough set theory, vague set theory, and interval mathematics theory for dealing
with uncertainties. However, the superiority of the soft set theory compared
with other mathematical tools, is its ability of parametrization. Aktas and
Cagman [3] compared soft sets to the related concepts of fuzzy sets and rough
sets. They also introduced the notion of soft groups. After them, soft alge-
braic structures have been studied by many authors [14, 18, 19, 20, 24, 25, 26].
Specially, Y. B. Jun [18] introduced and investigated soft BCK/BCI-algebras.
Moreover, by combination of fuzzy set theory with soft set theory, fuzzy soft
algebraic structures were born. For example, Hadipour et al. [16] defined the
notion of fuzzy soft BF-algebra and investigated the level subset, union and
intersection, fuzzy soft image and fuzzy soft inverse image of them. The most
soft algebraic structures are defined as follows: for a set of parameters E and a
general algebra X, a pair (F,E) is called a soft general algebra over X if F is a
map of E into the set of all subsets of the set X such that for each e ∈ E,F (e)
is the empty set or a subalgebra of X.

In this paper, the concept of a soft hoop is introduced and some examples
are provided. Then, different types of intersections and unions of the family of
soft hoops are established. We defined two operations � and→ on the set of all
soft hoops on a hoop H and a parameters set E and we proved that with these
operations is a hoop and also is a Heyting algebra. Finally we introduced a
congruence relation on the set of all soft hoops and we investigated the quotient
of it.

2 Preliminaries

In this section, we recollect some definitions and results which will be used in
the following and we shall not cite them every time they are used.

Molodtsov ([21]) defined the soft set in the following way: Let U be an
initial universe set and E be a set of parameters. We denote ρ(U) the power
set of U and A ⊆ E. A pair (λ,A) is called a soft set over U, where λ is a map
given by λ : A → ρ(U). In other words, a soft set over U is a parametrized
family of subsets of the universe U . For ε ∈ A, λ(ε) may be considered as the
set of ε-approximate elements of the soft set (λ,A). Clearly, a soft set is not
a set. For illustration, Molodtsov considered several examples in [21].

Let (F,A) and (G,B) be two soft sets over U . Then,
(i) (F,A) is said to be a soft subset of (G,B), denoted by (F,A) ⊆ (G,B), if
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A ⊆ B and F (a) ⊆ G(a), for all a ∈ A.
(ii) Two soft sets (F,A) and (G,B) are said to be a soft equal, denoted by
(F,A) = (G,B), if (F,A) ⊆ (G,B) and (G,B) ⊆ (F,A).

Let U be an initial universe and E be the set of parameters such that
A ⊆ E. Then,
(i) (F,A) is called a relative null soft set (with respect to the parameter set
A), denoted by φA, if F (a) = φ, for all a ∈ A.
(ii) (G,A) is called a relative whole soft set (with respect to the parameter set
A), denoted by UA, if G(a) = U , for all a ∈ A.

The relative whole soft set with respect to the set of parameters E is called
the absolute soft set over U and simply denoted by UE . In a similar way, the
relative null soft set with respect to E is called the null soft set over U and
is denoted by ∅E . We shall denote by ∅E the unique soft set over U with an
empty parameter set, which is called the empty soft set over U . Note that ∅∅
and ∅E are different soft sets over U and ∅∅ ⊆ ∅A ⊆ (F,A) ⊆ UA ⊆ UE , for all
soft set (F,A) over U (See [21, 22]).

The next definition introduces three types of intersections and three types
of unions of the family of soft sets over a common universe set. For a family
{(Fi, Ai) | i ∈ I} of soft sets over U , we give some definitions as below:

(a) The extended intersection of the family {(Fi, Ai) | i ∈ I} is defined
as the soft set

⋂
i∈I

(Fi, Ai) = (H,C), where C =
⋃

i∈I Ai and H(x) =⋂
i∈I(x) Fi(x); I(x) = {i | x ∈ Ai}, for all x ∈ C.

(b) The restricted intersection of the family (Fi, Ai) is defined as the soft set∏
i∈I

(Fi, Ai) = (H,C), where C =
⋂

i∈I Ai 6= ∅ and H(x) =
⋂

i∈I Fi(x),

for all x ∈ C.

(c) The extended union of the family (Fi, Ai) is defined as the soft set∐
i∈I

(Fi, Ai) = (H,C), where C =
⋃

i∈I Ai, H(x) =
⋃

i∈I(x) Fi(x), and

I(x) = {i | x ∈ Ai}, for all x ∈ C.

(d) The restricted union of the family (Fi, Ai) is defined as the soft set⋃
i∈I

(Fi, Ai) = (H,C), where C =
⋂

i∈I Ai 6= ∅ and H(x) =
⋃

i∈I Fi(x),

for all x ∈ C.

(e) The ∧-intersection of the family (Fi, Ai) is defined as the soft set∧
i∈I

(Fi, Ai) = (H,C), where C =
∏

i∈I Ai and H((ai)i∈I) =
⋂

i∈I Fi(ai),

for all (ai)i∈I ∈ C.
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(f) The ∨-intersection of the family (Fi, Ai) is defined as the soft set∨
i∈I

(Fi, Ai) = (H,C), where C =
∏

i∈I Ai and H((ai)i∈I) =
⋃

i∈I Fi(ai),

for all (ai)i∈I ∈ C.

A hoop is an algebra (H,�,→, 1) of type (2, 2, 0) such that, for all x, y, z ∈ H,
(HP1) (H,�, 1) is a commutative monoid,
(HP2) x→ x = 1,
(HP3) (x� y)→ z = x→ (y → z),
(HP4) x� (x→ y) = y � (y → x).
On hoop H we define x ≤ y if and only if x → y = 1. It is easy to see that
” ≤ ” is a partial order relation on H. A hoop H is bounded if there is an
element 0 ∈ A such that 0 ≤ x, for all x ∈ A. Let x0 = 1, xn = xn−1 � x, for
any n ∈ N. If H is a bounded hoop, then we define a negation ” ′ ” on H by,
x′ = x→ 0, for all x ∈ H. If (x′)′ = x, for all x ∈ H, then the bounded hoop
H is said to have the double negation property, or (DNP) for short (See [15]).

The following proposition provides some properties of hoop.

Proposition 2.1. [11, 12] Let (H,�,→, 1) be a hoop. Then the following
conditions hold, for all x, y, z ∈ H,
(i) (H,≤) is a ∧-semilattice with x ∧ y = x� (x→ y),
(ii) x� y ≤ z if and only if x ≤ y → z,
(iii) x� y ≤ x, y and x ≤ y → x,
(iv) x→ 1 = 1 and 1→ x = x,
(v) x ≤ y implies x� z ≤ y � z, z → x ≤ z → y and y → z ≤ x→ z.

Proposition 2.2. [15] Let H be a bounded hoop. Then the following condi-
tions hold, for all x, y ∈ H,
(i) x ≤ x′′ and x′′′ = x′,
(ii) x� x′ = 0 and x ≤ x′ → y.

Let H be a hoop. A non-empty subset F of H is called a filter of H if it
satisfies the following assertion,
(F1) x, y ∈ F implies x� y ∈ F ,
(F2) x ∈ F and x ≤ y imply y ∈ F , for any y ∈ H.
Clearly, 1 ∈ F , for all filters F of H. A filter F of H is called a proper filter
if F 6= H. It can be easily seen that, if H is a bounded hoop, then a filter is
proper if and only if it is not containing 0 (See [15]).

Note. From now on, in this paper, (H,�,→, 1) or simply H is a hoop and
E is a set of parameters, unless otherwise state.
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3 Soft sub-hoops

In this section, we introduce the notions of sub-hoop and soft-hoop, and in-
vestigate some properties of them.

Definition 3.1. A sub-hoop of a hoop H is a subset S of H containing the
unit element of H. It means that a subset S of a hoop H is called a sub-hoop
of H if 1 ∈ S, x� y ∈ S and x→ y ∈ S, for all x, y ∈ S.

Example 3.2. (i) Every filter F of H is a sub-hoop of H.
Because, for any x, y ∈ F , x � y ∈ F and by Proposition 2.1(iii), y ≤ x → y,
since y ∈ F and F is a filter of H, x→ y ∈ F .
(ii) Let H = {0, a, b, c, d, 1} be a set. Define the operations � and → on H
as follow:

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a d 0 d a
b 0 d c c 0 b
c 0 0 c c 0 c
d 0 d 0 0 0 d
1 0 a b c d 1

By routine calculations we can see that (H,�,→, 0, 1) is a bounded hoop.
Let S1 = {a, 1} and S2 = {b, c, 1}. It is easy to see that S1 and S2 are two
sub-hoops of H.

Proposition 3.3. Let {Hi | i ∈ I} be a family of sub-hoops of H. Then⋂
i∈I Hi is a sub-hoop of H.

Proof. The proof is clear.

In the following example, we show that the union of a family of sub-hoops
may not be a sub-hoop, in general.

Example 3.4. Let H be a hoop as in Example 3.2(ii). As we see, S1 and S2

are two sub-hoops of H. But it is clear that S = S1 ∪ S2 = {a, b, c, 1} is not a
sub-hoop of H, because a� b = d /∈ S.

In the following proposition we investigate that under which condition, the
union of a family of sub-hoops is a sub-hoop.

Proposition 3.5. Let {Hi | i ∈ I} be a family of sub-hoops of H. If, for any
i, j ∈ I, Hi ⊂ Hj or Hj ⊂ Hi, then

⋃
i∈I Hi is a sub-hoop of H.
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Proof. The proof is clear.

Definition 3.6. Let (λ,A) be a soft set over H, where A ⊆ E. Then (λ,A)
is called a soft hoop of H if λ(e) is a sub-hoop of H, for any e ∈ A.

The set of all soft hoops over H is denoted by SoftE(H), that is

SoftE(H) = {(λi, Aj) | Aj ⊆ E, λi : Aj → ρ(H) and (λi, Aj) is a soft hoop ofH}

Example 3.7. (i) Let H = {0, a, b, 1} be a set. Define the operations �
and → on H as follows:

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

Routine calculations show that (H,�,→, 0, 1) is a bounded hoop. Let
A ⊆ E in which {A1, A2} is a partition of A. Define a set-valued function
as follows:

λ : A→ ρ(H), e 7→
{
{b, 1} if e ∈ A1,
{0, a, 1} if e ∈ A2.

(3.1)

Then (λ,A) is a soft hoop over H.

(ii) Let µ : H → [0, 1] be a map such that, for any x, y ∈ H, we have

µ(x� y) ≥ min{µ(x), µ(y)} and µ(x→ y) ≥ min{µ(x), µ(y)}.

For any ε ∈ [0, 1], consider the set U(µ; ε) = {x ∈ H | µ(x) ≥ ε}. Define
a map

λ : [0, 1]→ ρ(H), ε 7→ U(µ, ε).

Then (λ, [0, 1]) is a soft hoop over H.

Proposition 3.8. Let (λ,A) be a soft hoop of H and B ⊆ A. Then (λ|B , B)
is a soft hoop of H, too.

Proof. It is obvious.

In the following example, we show that the converse of Proposition 3.8 may
not be true, in general.
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Example 3.9. Let H = {0, a, b, c, d, 1} be a bounded hoop as in Example
3.2(ii), then let A ⊆ E such that {A1, A2} be a partition of A. Define a
set-valued function as follows:

λ : A→ ρ(H), e 7→
{
{0, 1} if e ∈ A1,
{0, c, d, 1} if e ∈ A2.

(3.2)

Then (λ,A1) is a soft hoop over H, but (λ,A) is not a soft hoop over H.
Because if e ∈ A2, then λ(e) = {0, c, d, 1} is not a sub-hoop of H. But if we
take B = A1 ⊂ A, then (λ|B , B) is a soft hoop over H.

Theorem 3.10. Let H be a hoop and {(λi, Aj)}i,j∈I ⊆ SoftE(H). Then the
following statements hold:

(i) The extended intersection
⋂

i,j∈I(λi, Aj) is a soft hoop over H, if it is
non-null.

(ii) The restricted intersection
∏

i,j∈I(λi, Aj) is a soft hoop over H, if it is
non-null.

(iii) The
∧

-intersection
∧

i,j∈I(λi, Aj) is a soft hoop over H, if it is non-null.

Proof. (i) As we know,
⋃

j∈I Aj ⊂ A and by Proposition 3.3,
⋂

i∈I λi is a
sub-hoop of H. So

⋂
i,j∈I(λi, Aj) is a soft hoop over H.

The proof of other items is similar to the proof of (i).

In the following example, we show that different kinds of union of a family
of soft hoops may not be a soft hoop, in general.

Example 3.11. Let H be a hoop as Example 3.2(ii) and A = {e1, e2} ⊆ E
such that A1 = {e1} and A2 = {e2}. Define λ1(e1) = {a, 1} and λ2(e2) =
{b, c, 1}. Routine calculations show that (λ1, A1) and (λ2, A2) are two soft
hoops over H, but (λ1, A1)∪ (λ2, A2) = ({e1, e2}, {a, b, c, 1}) is not a soft hoop
over H. Because a� b = d /∈ {a, b, c, 1}.

Definition 3.12. Let (λ,A) and (γ,B) be two soft hoops over H. Then (λ,A)
is called a soft sub-hoop of (γ,B) if it satisfies:
(i) A ⊆ B,
(ii) λ(e) is a sub-hoop of γ(e), for all e ∈ A.

If (λ,A) is a soft sub-hoop of (γ,B), then we denoted it by (λ,A)⊆(γ,B).
Two soft sub-hoops (λ,A) and (γ,B) are said to be a soft equal hoop, denoted
by (λ,A) = (γ,B), if (λ,A)⊆(γ,B) and (γ,B)⊆(λ,A).
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Example 3.13. Let H be a hoop as Example 3.2 and E = {e1, e2, e3}. Define

A = {e1}, γ(e1) = {1, a}, B = {e1, e2}, λ(e) =

{
{0, a, c, 1} if e = e1,
{c, 1} if e = e2.

It is clear that (γ,A)⊆(λ,B).

Proposition 3.14. (i) If (λ,A) and (γ,A) are two soft hoops over H such
that λ(e) is a sub-hoop of γ(e), for all e ∈ A, then (λ,A) is a soft sub-hoop of
(γ,A).
(ii) If (λ,H) and (ϕ, {1}) are two soft hoops over H, then (ϕ, {1}) is a soft
sub-hoop of (λ,H).

Proof. It is straightforward.

4 Algebraic structures on SoftE(H)

In this section, we introduce some operations on SoftE(H) and we show that
SoftE(H) with these operations is a Heyting algebra and a hoop. Also, we
define a congruence relation on SoftE(H) and investigate the quotient that is
made by it.

Note. From now on, in this section, for any e ∈ A, λ(e)⊆̃γ(e) means that
λ(e) is a sub-hoop of γ(e).

Theorem 4.1. (SoftE(H),⊆) is a poset.

Proof. Let (λ,A) ∈ SoftE(H). Since A ⊆ A and for any e ∈ A, λ(e)⊆̃λ(e), by
Definition 3.12, we have (λ,A) ⊆ (λ,A). Hence, ⊆ is reflexive.
Now, let (λ,A), (γ,B) ∈ SoftE(H), such that (λ,A) ⊆ (γ,B) and (γ,B) ⊆
(λ,A). ThenA ⊆ B and, for any e ∈ A, λ(e)⊆̃γ(e). Also, B ⊆ A and for any e ∈
B, γ(e)⊆̃λ(e). Hence, (λ,A) = (γ,B), and so ⊆ is antisymmetry. Now, we
prove that the relation ⊆ is transitive. Let (λ,A), (γ,B), (η, C) ∈ SoftE(H),
such that (λ,A) ⊆ (γ,B) and (γ,B) ⊆ (η, C). Then A ⊆ B and, for any
e ∈ A, λ(e)⊆̃γ(e) and B ⊆ C and, for any e ∈ B, γ(e)⊆̃η(e). It is easy to
see that A ⊆ C and λ(e)⊆̃η(e), for any e ∈ A. Then (λ,A)⊆(η, C), and so
(SoftE(H),⊆) is a poset.

Note. In the following example, we show that extended union of the family
of soft hoops is not a soft hoop, in general. So, from now on, in this section,
we suppose that SoftE(H) is closed under two operations

∏
and

∐
.
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Example 4.2. Let H be a bounded hoop as in Example 3.2(ii). Suppose
E = {e1, e2, e3, e4} and define

A1 = {e1, e2, e3, e4} , λ1(e) =

 {1} if e = e1,
{a,1} if e = e2,
{0,1} if e ∈ {e3, e4}

A2 = {e1, e2, e3} , λ2(e) =

{
{1,c} if e = e3,
{1,b,c} if e ∈ {e1, e2}

A3 = {e1, e2, e3, e4} , λ3(e) =

 H if e = e1,
{0,a,c,1} if e = e4,
{1} if e ∈ {e3, e2}

A4 = {e2, e3} , λ4(e) =

{
{0,1} if e = e3,
{a,1} if e = e2.

By routine calculation, it is clear that (λi, Ai), for 1 ≤ i ≤ 4, are soft hoops of

H. But (γ,B) =
∐4

i=1(λi, Ai) is not a soft hoop of H. Because, for e = e3, we
have γ(e) = {0, c, 1}, which is not a sub hoop of H, since c→ 0 = a /∈ γ(e).

Definition 4.3. A soft set (λ,A) over H is called a trivial soft hoop (resp.,
whole soft hoop) if it is a soft hoop overH and satisfies the condition λ(e) = {1}
(resp., λ(e) = H), for all e ∈ A.

Theorem 4.4. (SoftE(H),
∏
,
∐
, HE , ∅∅) is a complete distributive bounded

lattice, where HE = (H,E) is the whole soft hoop over H and ∅∅ = (∅, ∅) is a
null soft hoop over H.

Proof. By Theorem 4.1, (SoftE(H),⊆) is a poset. Also, we have

∅∅ ⊆ ∅A ⊆ (λ,A) ⊆ HA ⊆ HE

Hence, ∅∅ and HE are the smallest and the greatest elements of SoftE(H),
respectively, and so SoftE(H) is bounded.
Now, we prove that (SoftE(H),

∏
,
∐
, HE , ∅∅) is a lattice. Let (λ,A), (γ,B), (η, C) ∈

SoftH(E). Then it is clear that (λ,A)
∐

(λ,A) = (λ,A). Also,

(λ,A)
∐

(γ,B) = (λ ∪ γ,A ∪B) = (γ ∪ λ,B ∪A) = (γ,B)
∐

(λ,A)
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Moreover, we have

(λ,A)
∐

((γ,B)
∐

(η, C)) = (λ,A)
∐

(γ ∪ η,B ∪ C)

= (λ ∪ (γ ∪ η), A ∪ (B ∪ C))

= ((λ ∪ γ) ∪ η, (A ∪B) ∪ C)

= (λ ∪ γ,A ∪B)
∐

(η, C)

= ((λ,A)
∐

(γ,B))
∐

(η, C)

Finally,

(λ,A)
∏

((λ,A)
∐

(γ,B)) = (λ,A)
∏

(λ ∪ γ,A ∪B)

= (λ ∩ (λ ∪ γ), A ∩ (A ∪B))

= (λ,A)

By the similar way, we can proof all these conditions for the operation
∏

.
Hence, (SoftE(H),

∏
,
∐

) is a lattice. Also, it is clear that (SoftE(H),
∏
,
∐

)
is a complete lattice.

So, it is enough to prove that (SoftE(H),
∏
,
∐

), is a distributive lattice.
For this, we have

(λ,A)
∏

[(γ,B)
∐

(η, C)] = (λ,A)
∏

(γ ∪ η,B ∪ C)

= [λ ∩ (γ ∪ η), A ∩ (B ∪ C)]

= [(λ ∩ γ) ∪ (λ ∩ η), (A ∩B) ∪ (A ∩ C)]

= (λ ∩ γ,A ∩B)
∐

(λ ∩ η,A ∩ C)

= [(λ,A)
∏

(γ,B)]
∐

[(λ,A)
∏

(η, C)]

The proof of other case is similar. Therefore, (SoftE(H),
∏
,
∐
, HE , ∅∅) is a

complete distributive bounded lattice.

Let (λ,A), (γ,B) ∈ SoftE(H). Then we define the operation → on
(SoftE(H),

∏
,
∐
, HE , ∅∅) as follows:

(λ,A)→ (γ,B) =
∐
i,j∈I
{(λi, Aj)|(λ,A)

∏
(λi, Aj)⊆(γ,B)}

Proposition 4.5. Let (λ,A), (γ,B) ∈ SoftE(H). Then the following asser-
tions, hold:
(i) (λ,A)→ (λ,A) = HE .
(ii) (λ,A)⊆(γ,B) if and only if (λ,A)→ (γ,B) = HE .
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Proof. (i) Let (λ,A), (γ,B) ∈ SoftE(H). Then,

(λ,A)→ (λ,A)

=
∐
i,j∈I
{(λi, Aj)|(λ,A)

∏
(λi, Aj)⊆(λ,A)}

=
∐
i,j∈I
{(λi, Aj)|(λ ∩ λi, A ∩Aj)⊆(λ,A)}

=
∐
i,j∈I
{(λi, Aj)|A ∩Aj ⊆ A and (λ ∩ λi)(e)⊆̃λ(e), for any e ∈ A ∩Aj}

= (
⋃
i∈I

λi,
⋃
j∈I

Aj)

= HE

(ii) Let (λ,A)⊆(γ,B). Then by Definition 3.12, A ⊆ B and λ(e)⊆̃γ(e),
for any e ∈ A. Thus,

(λ,A)→ (γ,B) =
∐
i,j∈I
{(λi, Aj)|(λ,A)

∏
(λi, Aj)⊆(γ,B)}

=
∐
i,j∈I
{(λi, Aj)|(λ ∩ λi, A ∩Aj)⊆(γ,B)}

= HE

Since A ∩Aj ⊆ B and (λ ∩ λi)(e)⊆̃γ(e), for any e ∈ A ∩Aj .
Conversely, assume that (λ,A) → (γ,B) = HE . Then, for any (η, C) ∈

SoftE(H) we have, (λ,A)
∏

(η, C)⊆(γ,B). Hence, for (η, C) = (λ,A), we have
(λ,A) ⊆ (γ,B).

Theorem 4.6. (SoftE(H),
∏
,→, HE , ∅∅) is a bounded hoop.

Proof. The operation
∏

will be consider as a product operation on SoftE(H).
So

(λ,A)
∏

(γ,B) = (λ ∩ γ,A ∩B)

Then it is clear that SoftE(H) is closed with respect to
∏

. Now, we prove
that (SoftE(H),

∏
, HE) is a commutative monoid with the greatest element.
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For this, for any (λ,A), (γ,B), (η, C) ∈ SoftE(H), we have,

(λ,A)
∏
{(γ,B)

∏
(η, C)} = (λ,A)

∏
(γ ∩ η,B ∩ C)

= (λ ∩ (γ ∩ η), A ∩ (B ∩ C))

= ((λ ∩ γ) ∩ η, (A ∩B) ∩ C)

= (λ ∩ γ,A ∩B)
∏

(η, C)

= {(λ,A)
∏

(γ,B)}
∏

(η, C)

and
(λ,A)

∏
HE = (λ,A)

∏
(H,E) = (λ ∩H,A ∩ E) = (λ,A)

Therefore, (SoftE(H),
∏
, HE) is a commutative monoid with the greatest

element HE . By Proposition 4.5(i), (λ,A)→ (λ,A) = HE ,

= (λ,A)→ ((γ,B)→ (η, C))

=
∐
i,j∈I
{(λi, Aj)|(λi, Aj) ∩ (λ,A)⊆

∐
k,l∈I

{(ηk, Cl)|(γ,B)
∏

(ηk, Cl)⊆(η, C)}}

So we have, for every i, j ∈ I, (λi, Aj) ∩ (λ,A)⊆
∐

k,l∈I{(ηk, Cl)}. Then,

(λi, Aj) ∩ (λ,A) ∩ (γ,B)⊆
∐
k,l∈I

{(ηk, Cl) ∩ (γ,B)}.

Since (SoftE(H),
∏
,
∐

) is a distributive lattice, we get that

(λi, Aj) ∩ (λ,A) ∩ (γ,B)⊆
∐
k,l∈I

{(ηk, Cl) ∩ (γ,B)}⊆(η, C).

Therefore,

(λ,A)→ ((γ,B)→ (η, C))

=
∐
i,j∈I
{(λi, Aj)|(λi, Aj) ∩ (λ,A) ∩ (γ,B)⊆(η, C)}

= ((λ,A) ∩ (γ,B))→ (η, C)

Now, it is enough to prove that,

(λ,A)
∏

(γ,B) = (λ,A)
∏

((λ,A)→ (γ,B))

So, by Theorem 4.4, since (λ,A)
∏

(γ,B) = (γ,B)
∏

(λ,A), we consequence
that,

(λ,A)
∏

((λ,A)→ (γ,B)) = (λ,A)
∏

(γ,B) = (γ,B)
∏

(λ,A)

= (γ,B)
∏

((γ,B)→ (λ,A))
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Thus, according to definition →, it is clear that,

(γ,B)⊆
∐
i,j∈I
{(λi, Aj)|(λ,A)

∏
(λi, Aj)⊆(γ,B)} = (λ,A)→ (γ,B)

Then
(λ,A)

∏
(γ,B)⊆(λ,A)

∏
((λ,A)→ (γ,B))

Conversely,

(λ,A)
∏

((λ,A)→ (γ,B))

= (λ,A)
∏

(
∐
i,j∈I
{(λi, Aj)|(λ,A)

∏
(λi, Aj)⊆(γ,B)})

=
∐
i,j∈I
{(λi ∩ λ,Aj ∩A)|(λ ∩ λi, A ∩Aj)⊆(γ,B)}

Since (λ∩λi)(e)⊆̃γ(e), we have (λ∩λ∩λi)(e)⊆̃(λ∩ γ)(e), for any e ∈ A∩Ai.
Also, from A ∩Aj ⊆ B, we get that A ∩A ∩Ai ⊆ A ∩B. So,∐

i∈I
(λ ∩ λi)(e)⊆̃(λ ∩ γ)(e) ,

⋃
j∈I

(A ∩Aj)⊆A ∩B

Hence, ∐
i,j∈I

(λ ∩ λi, A ∩Aj)⊆(λ ∩ γ,A ∩B)

Finally,

(λ,A)
∏

((λ,A)→ (γ,B))

= (λ,A)
∏

(
∐
i,j∈I
{(λi, Aj)|(λ,A)

∏
(λi, Aj)⊆(γ,B)})

⊆ (λ,A)
∏

(γ,B)

Therefore, (SoftE(H),
∏
,→, HE , ∅∅) is a bounded hoop.

Definition 4.7. [6] A Heyting algebra is an algebra (A,∨,∧,→, 1) of type
(2, 2, 2, 0), where (A,∨,∧, 1) is a lattice with the greatest element 1 and, for
any x, y, z ∈ A,

x ≤ y → z if and only if x ∧ y ≤ z (∗)

Theorem 4.8. (SoftE(H),
∏
,
∐
,→, HE) is a Heyting algebra.
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Proof. By Theorem 4.4, we prove that (SoftE(H),
∏
,
∐
, HE , ∅∅) is a distribu-

tive lattice with the greatest element HE . Now, it is enough to prove that
the condition (*) hold. Let (λ,A), (γ,B) and (η, C) ∈ SoftE(H) such that
(λ,A)⊆(γ,B)→ (η, C). By definition of the operation →, we have

(γ,B)→ (η, C) =
∐
i,j∈I
{(µi, Dj) | (µi, Dj) ∩ (γ,B)⊆(η, C)} =

∐
i,j∈I

(µi, Dj)

Since (λ,A)⊆(γ,B)→ (η, C), we get that (λ,A)⊆
∐

i,j∈I(µi, Dj). Then

(λ,A)
∏

(γ,B)⊆(γ,B)
∏

(
∐
i,j∈I

(µi, Dj))

Moreover, since the lattice is distributive, we consequence that

(λ,A)
∏

(γ,B)⊆
∐
i,j∈I

[(µi, Dj)
∏

(γ,B))] ⊆
∐

(η, C) = (η, C)

So, (λ,A)
∏

(γ,B)⊆(η, C).

Conversely, suppose (λ,A)
∏

(γ,B)⊆(η, C). Then, according to definition
of →, we consequence that (λ,A) ∈ (γ,B)→ (η, C). Hence, (λ,A)⊆(γ,B)→
(η, C). Therefore, (SoftE(H),

∏
,
∐
,→, HE) is a Heyting algebra.

As we know, by (→, ∅∅) we can define

(λ,A)→ ∅∅ =
∐
i,j∈I
{(λi, Aj)|((λi, Aj) ∩ (λ,A)⊆(∅, ∅)}.

Since for any ∅∅ 6= (λi, Aj) ∈ SoftE(H), 1 ∈ λi, then (λi, Aj) ∩ (λ,A) 6=
(∅, ∅). Hence, (λ,A) → ∅∅ = ∅∅ Therefore, we conclude that for any (λ,A) ∈
SoftE(H), (λ,A)→ ∅∅ = ∅∅.

Example 4.9. Let H be a hoop in Example 3.7 and E = {e1, e2}. Then
define the set of soft hoops as follows:
A1 = ∅ and λ1 : A→ ρ(H) such that λ1 = ∅ so (λ1, A1) = (∅, ∅) = ∅∅,
A2 = E and λ2 : E → ρ(H) such that λ2 = H, so (λ2, A2) = HE ,
A3 = {e1} and λ3 : A3 → ρ(H) such that λ3(e1) = {0, 1},
A4 = {e1, e2} and λ4 : A4 → ρ(H) such that λ4(e1) = λ4(e2) = {0, a, 1},

A5 = {e1, e3} and λ5 : A5 → ρ(H) such that λ5(e) =

{
{b, 1} if e = e1,
{0, b, 1} if e = e3.

.

Then by routine calculations, we can see that, for any 2 ≤ i ≤ 5,

(λi, Ai)→ ∅∅ = ∅∅ and (λ1, A1)→ ∅∅ = ∅∅ → ∅∅ = HE

Hence, it is clear that double negation property does not hold, and so (SoftE(H),
∏
,→

, HE , ∅∅) is not an MV -algebra.
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Theorem 4.10. Let (λ,A), (γ,B) ∈ SoftE(H). Define the relation ≡ on
SoftE(H) as follows:

(λ,A) ≡ (γ,B)⇐⇒ ∃(ϕ,C) ∈ SoftE(H) st. (λ,A)
∏

(ϕ,C)⊆(γ,B)

Then ≡ is a congruence relation on SoftE(H).

Proof. It is clear that (λ,A) ≡ (λ,A). If (λ,A) ≡ (γ,B), then there exists
(ϕ,C) = (γ,B) ∈ SoftE(H) such that (λ,A)

∏
(γ,B)⊆(γ,B). By the similar

way, (γ,B)
∏

(λ,A)⊆(λ,A), and so (γ,B) ≡ (λ,A). Hence, it is symmetric.
Now, let (λ,A) ≡ (γ,B) and (γ,B) ≡ (4, D). Since (λ,A) ≡ (γ,B), there
exists (ϕ1, C1) ∈ SoftE(H) such that,

(λ,A)
∏

(ϕ1, C1)⊆(γ,B)

Also, from (γ,B) ≡ (4, D), there exists (ϕ2, C2) ∈ SoftE(H) such that,

(γ,B)
∏

(ϕ2, C2)⊆(4, D)

Then there exists (ϕ1, C1)
∏

(ϕ2, C2) ∈ SoftE(H) such that

(λ,A)
∏

(ϕ1, C1)
∏

(ϕ2, C2)⊆(γ,B)
∏

(ϕ2, C2)⊆(4, D)

Hence, (λ,A) ≡ (4, D).

Now, let (λ,A) ≡ (γ,B). Then there exists (ϕ,C) ∈ SoftE(H) such that,
(λ,A)

∏
(ϕ,C)⊆(γ,B). Since

∏
is the product operation on SoftE(H), for any

(4, D) ∈ SoftE(H), we get that,

(λ,A)
∏

(ϕ,C)
∏

(4, D)⊆(γ,B)
∏

(4, D)

Thus, there exists (ϕ,C) ∈ SoftE(H) such that,

((λ,A)
∏

(4, D))
∏

(ϕ,C)⊆(γ,B)
∏

(4, D)

Hence,

(λ,A)
∏

(4, D) ≡ (γ,B)
∏

(4, D)

Moreover, suppose (λ,A) ≡ (γ,B). Then there exists (ϕ,C) = (λ,A)
∏

(γ,B) ∈
SoftE(H), such that (λ,A)

∏
(ϕ,C)⊆(γ,B). Let (4, D) ∈ SoftE(H). Then

((λ,A)→ (4, D))
∏

(ϕ,C) =
∐
i,j∈I
{(λi, Aj)|(λ,A)

∏
(λi, Aj)⊆(4, D)}

∏
(ϕ,C)
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Since (SoftE(H),
∏
,
∐

) is a distributive lattice, and (λ,A)
∏

(ϕ,C)⊆(γ,B).
By considering (λi, Aj)

∏
(λ,A) = (ηi, Fj) we have,∐

i,j∈I
{(λi, Aj)|(λ,A)

∏
(λi, Aj)⊆(4, D)}

∏
(ϕ,C)

=
∐
i,j∈I
{(λi, Aj)

∏
(ϕ,C)|(λ,A)

∏
(λi, Aj)

∏
(ϕ,C)⊆(4, D)

∏
(ϕ,C)⊆(4, D)}

=
∐
i,j∈I
{(λi, Aj)

∏
(λ,A)

∏
(γ,B)|(λi, Aj)

∏
(λ,A)

∏
(γ,B)⊆(4, D)}

⊆
∐
i,j∈I
{(λi, Aj)

∏
(λ,A)|(λi, Aj)

∏
(λ,A)

∏
(γ,B)⊆(4, D)}

=
∐
i,j∈I
{(ηi, Fj)|(γ,B)

∏
(ηi, Fj)⊆(4, D)}

= (γ,B)→ (4, D)

Hence, (λ,A)→ (4, D) ≡ (γ,B)→ (4, D).
Now, let (λ,A) ≡ (γ,B). Then there exists (ϕ,C) ∈ SoftE(H), such that
(λ,A)

∏
(ϕ,C)⊆(γ,B). Suppose (δ,G) ∈ SoftE(H). Thus,

((δ,G)→ (λ,A))
∏

(ϕ,C) =
∐
i,j∈I
{(δi, Gj)|(δi, Gj)

∏
(δ,G)⊆(λ,A)}

∏
(ϕ,C)

Since (SoftE(H),
∏
,
∐

) is a distributive lattice, (λ,A)
∏

(ϕ,C)⊆(γ,B). By
considering (δi, Gj)

∏
(ϕ,C) = (ηi, Fj) we have∐

i,j∈I
{(δi, Gj)|(δi, Gj)

∏
(δ,G)⊆(λ,A)}

∏
(ϕ,C)

=
∐
i,j∈I
{(δi, Gj)

∏
(ϕ,C)|(δi, Gj)

∏
(ϕ,C)

∏
(δ,G)⊆(λ,A)

∏
(ϕ,C)}

⊆
∐
i,j∈I
{(δi, Gj)

∏
(ϕ,C)|(δi, Gj)

∏
(ϕ,C)

∏
(δ,G)⊆(λ,A)

∏
(ϕ,C)⊆(γ,B)}

=
∐
i,j∈I
{(ηi, Fj)|(δ,G)

∏
(ηi, Fj)⊆(γ,B)}

= (δ,G)→ (γ,B)

Then (δ,G)→ (γ,B) ≡ (δ,G)→ (λ,A). Therefore, ≡ is a congruence relation
on SoftE(H).

Corollary 4.11. (SoftE(H)/ ≡,
∏
,→, HE) is a hoop.
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5 Conclusions and future works

In this paper, the concept of soft hoop is introduced and some examples are
provided. Then, different types of intersections and unions of the family of
soft hoops are established. We defined two operations � and → on a hoop H
and a parameters set E and we proved that the set of all soft hoops with these
operations is a hoop and also is a Heyting algebra. Finally we introduced
a congruence relation on the set of all soft hoops and we investigated the
quotient of it. For the future works, it can be investigated that under which
conditions, the set of all soft hoops can be considered as one of other algebraic
structures.
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[13] J. R. Büchi, T. M. Owens, Complemented monoids and hoops, unpub-
lished manuscript, (1975).

[14] F. Feng, Y. B. Jun, X. Z. Zhao, Soft semirings, Computers and Mathe-
matics with Applications, 56 (2008), 2621–2628.

[15] G. Georgescu, L. Leustean, V. Preoteasa, Pseudo-hoops, Journal of
Multiple-Valued Logic and Soft Computing, 11(1-2) (2005), 153–184.

[16] A. R. Hadipour, A. Borumand Saeid, Fuzzy soft BF-algebra, Indian Jour-
nal of Science and Technology, 6(3) (2013), 4199–4204.
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